
 The Ohio State University
 Dept. of Comp. Sci. and Engg.

Funded in part by DOE-ECP project: “Exascale Code Generation Toolkit”, PI: Dan Quinlan

Overview
Goal

● Achieve high performance for high-order multi-
statement stencil computations on GPU
Problem

● Higher-order stencils have high arithmetic intensity,
but exhibit high per-thread register pressure

● Mature compilers like NVCC unable to perform well
Solution Approach

● Spill-free minimal-register instruction scheduling for
trees is known (Sethi-Ullman, 1970)

● A new abstraction that models a multi-statement
stencil as a DAG of expression trees

● The many-to-many reuse within/across stencil ops
captured via shared leaves

● Extend Sethi-Ullman register allocation to a DAG of
expression tree with data sharing

Prashant Singh Rawat, Aravind Sukumaran-Rajam,
 Atanas Rountev, P. Sadayappan

Sethi-Ullman Scheduling
● Gives optimal evaluation of a tree without data reuse
● Computes Sethi-Ullman number (SU) for a node,

which is the MAXLIVE for a subtree rooted at it
● For a binary node, prioritize evaluation of ‘heavier’

child first for optimality: better reuse of registers

Instruction Reordering: Stencils

Scheduling a tree with sharing
● Modified Sethi-Ullman algorithm with ‘context’ of

live-in and live-out values at each node
● For node n, try all permutations of children for

evaluation. Select one with minimum MAXLIVE
● Optimal under atomic evaluation, but intractable

Optimizations for tractability
● Prune the evaluations with several heuristics:

 - Use SU for independent subtrees, exploration
 restricted to dependent subtrees
 - Stop exploration if the register requirement is
 close to the computed lower bound on SU
 - Memoize MAXLIVE with context at each subtree

Interleaving within subtrees
● Go beyond the restriction of atomic subtree

evaluation – interleave computations to further
reduce MAXLIVE

● Must be performed within and across trees
● Example: Bring uses of a[i],b[i],d[i] together

● Generate versions with varying degree of splits,
increase register-level reuse via unrolling

● For all the trees within a split,
 - fix an evaluation order that preserves dependences
 - perform computation interleaving across trees
 - perform scheduling and interleaving within a tree

Scheduling a DAG of trees

Benchmarks Domain GFlops

loh1 3012x171
150.59

254.28

Cartesian 1282x512
146.32

235.39

Cartesian skinny 962x1600
132.60

205.40

Pointsource 2013
151.65

249.49

● Evaluation on rhs4center_dev routine of sw4lite code
(developer branch) K40c device with NVCC-8.0

● restrict keyword for texture cache, register pressure
varied to get optimal performance

● Unrolling enhances register-level reuse, but better
instruction order required to alleviate register pressure

Experimental Evaluation

Original Code
Register Optimized Code

Expression Tree Accumulation Form MAXLIVE: SU Numbering 

	Slide 1

